Twisted Poincaré duality for some quadratic Poisson algebras
نویسنده
چکیده
We exhibit a Poisson module restoring a twisted Poincaré duality between Poisson homology and cohomology for the polynomial algebra R = C[X1, . . . , Xn] endowed with Poisson bracket arising from a uniparametrised quantum affine space. This Poisson module is obtained as the semiclassical limit of the dualising bimodule for Hochschild homology of the corresponding quantum affine space. As a corollary we compute the Poisson cohomology of R, and so retrieve a result obtained by direct methods (so completely different from ours) by Monnier. 2000 Mathematics subject classification: 17B63, 17B55, 17B37, 16E40
منابع مشابه
Twisted Poisson duality for some quadratic Poisson algebras
We exhibit a Poisson module restoring a twisted Poincaré duality between Poisson homology and cohomology for the polynomial algebra R = C[X1, . . . , Xn] endowed with Poisson bracket arising from a uniparametrised quantum affine space. This Poisson module is obtained as the semiclassical limit of the dualising bimodule for Hochschild homology of the corresponding quantum affine space. As a coro...
متن کاملNew Lie-Algebraic and Quadratic Deformations of Minkowski Space from Twisted Poincaré Symmetries
We consider two new classes of twisted D=4 quantum Poincaré symmetries described as the dual pairs of noncocommutative Hopf algebras. Firstly we investigate the two-parameter class of twisted Poincaré algebras which provide the Liealgebraic noncommutativity of the translations. The corresponding star-products and new deformed Lie-algebraic Minkowski spaces are introduced. We discuss further the...
متن کاملKoszul duality in deformation quantization and Tamarkin’s approach to Kontsevich formality
Let α be a quadratic Poisson bivector on a vector space V . Then one can also consider α as a quadratic Poisson bivector on the vector space V ∗[1]. Fixed a universal deformation quantization (prediction of some complex weights to all Kontsevich graphs [K97]), we have deformation quantization of the both algebras S(V ∗) and Λ(V ). These are graded quadratic algebras, and therefore Koszul algebr...
متن کاملNonlocal Quadratic Poisson Algebras, Monodromy Map, and Bogoyavlensky Lattices
A new Lax representation for the Bogoyavlensky lattice is found, its r–matrix interpretation is elaborated. The r–matrix structure turns out to be related to a highly nonlocal quadratic Poisson structure on a direct sum of asso-ciative algebras. The theory of such nonlocal structures is developed, the Poisson property of the monodromy map is worked out in the most general situation. Some proble...
متن کاملTwisted K-theory and Poincaré Duality
Using methods of KK-theory, we generalize Poincaré K-duality to the framework of twisted K-theory.
متن کامل