Twisted Poincaré duality for some quadratic Poisson algebras

نویسنده

  • Stéphane Launois
چکیده

We exhibit a Poisson module restoring a twisted Poincaré duality between Poisson homology and cohomology for the polynomial algebra R = C[X1, . . . , Xn] endowed with Poisson bracket arising from a uniparametrised quantum affine space. This Poisson module is obtained as the semiclassical limit of the dualising bimodule for Hochschild homology of the corresponding quantum affine space. As a corollary we compute the Poisson cohomology of R, and so retrieve a result obtained by direct methods (so completely different from ours) by Monnier. 2000 Mathematics subject classification: 17B63, 17B55, 17B37, 16E40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Poisson duality for some quadratic Poisson algebras

We exhibit a Poisson module restoring a twisted Poincaré duality between Poisson homology and cohomology for the polynomial algebra R = C[X1, . . . , Xn] endowed with Poisson bracket arising from a uniparametrised quantum affine space. This Poisson module is obtained as the semiclassical limit of the dualising bimodule for Hochschild homology of the corresponding quantum affine space. As a coro...

متن کامل

New Lie-Algebraic and Quadratic Deformations of Minkowski Space from Twisted Poincaré Symmetries

We consider two new classes of twisted D=4 quantum Poincaré symmetries described as the dual pairs of noncocommutative Hopf algebras. Firstly we investigate the two-parameter class of twisted Poincaré algebras which provide the Liealgebraic noncommutativity of the translations. The corresponding star-products and new deformed Lie-algebraic Minkowski spaces are introduced. We discuss further the...

متن کامل

Koszul duality in deformation quantization and Tamarkin’s approach to Kontsevich formality

Let α be a quadratic Poisson bivector on a vector space V . Then one can also consider α as a quadratic Poisson bivector on the vector space V ∗[1]. Fixed a universal deformation quantization (prediction of some complex weights to all Kontsevich graphs [K97]), we have deformation quantization of the both algebras S(V ∗) and Λ(V ). These are graded quadratic algebras, and therefore Koszul algebr...

متن کامل

Nonlocal Quadratic Poisson Algebras, Monodromy Map, and Bogoyavlensky Lattices

A new Lax representation for the Bogoyavlensky lattice is found, its r–matrix interpretation is elaborated. The r–matrix structure turns out to be related to a highly nonlocal quadratic Poisson structure on a direct sum of asso-ciative algebras. The theory of such nonlocal structures is developed, the Poisson property of the monodromy map is worked out in the most general situation. Some proble...

متن کامل

Twisted K-theory and Poincaré Duality

Using methods of KK-theory, we generalize Poincaré K-duality to the framework of twisted K-theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008